

Dust model validation using CALIPSO

Vassilis Amiridis¹, U. Wandinger², E. Marinou¹, A. Tsekeri¹, S. Basart³, S. Kazadzis⁴, J. Baldasano^{3,6}, A. Ansmann² **Stavros Solomos**¹, C. Kontoes¹

¹National Observatory of Athens Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, Athens, GR-15236, Greece
²Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
³Barcelona Supercomputing Center, Barcelona, Spain
⁴Institute of Environmental Research and Sustainable Development, National Observatory of Athens, Greece

⁵Environmental Modelling Laboratory, Technical University of Catalonia, Barcelona, Spain

Points to be discussed

- Opportunity to distinguish dust from space: CALIPSO depolarization capability
- Improve lidar ratio for Saharan dust in retrieval algorithms
 - Develop a dust climatology including vertical information
 - Examine the use of satellite data for assimilation and validation of dust models

LIVAS data processing chain

LIVAS Climatology

LIVAS web-portal - Climatology

LIVAS FTP – Web portal NetCDF files For complete database

http://lidar.space.noa.gr:8080/livas/ ftp://lidar.space.noa.gr

Dust Lidar Ratio and its impact on LIVAS dust climatology

Relative bias of CALIPSO with respect to 147 sunphotometer stations in globe is -13% when dust is present and -3% when dust retrievals are not included in the analysis

Schuster et al., 2012

Saharan Dust Lidar Ratio

14

11

0.3

0.3

6

0.4

0.4

4

0.5

0.5

AERONET AOD class

2

0.6

0.6

2

0.8

0.8

0.7

0.7

0.9

0.9

10

1.0

CALIOP AOD ALay (532 nm)

Pure Dust cases from CALIPSO typing

Saharan dust LR (CALIOP vs AERONET)

Comparison of CALIPSO AOD versus collocated AERONET measurements when LR is equal to 40 sr (left) and when LR is equal to 58 sr (right).

Amiridis et al. ACP 2013

Saharan Dust LR (CALIPSO vs MODIS)

CALIPSO AODs $(1^{0}x1^{0})$ versus collocated MODIS-Aqua Level 3 product using LR equal to 40 sr (left) and LR equal to 58 sr (right).

Upper: 2D histograms representing the number of cases found for each CALIPSO/MODIS AOD bin between 0 and 1.0 (bin step equal to 0.0125).

Lower: Data are screened to ensure horizontal homogeneity in the cell cloud-free conditions for the MODIS cell.

Saharan Dust LR = 58 sr

Separation of pure dust from dust mixtures

mean depolarization for the OTHER aerosol type, equal to 0.03

- Left: Aerosol type.
- Middle: Particle depolarization ratio (black line), mean layer depolarization reported by CALIPSO (green line) and re-calculated mean particle depolarization ratio (red line).
- **Right**: Backscatter coefficient separation for pure dust (in magenta color) and "other" aerosol type (in cyan color).

Tesche et al., 2012

Decomposition of dust from other aerosols

Comparison of CALIPSO product with DREAM

Original Version I CALIPSO AOD

Updated Version III CALIPSO AOD (LR equal to 58 sr, non-dust aerosol types, pure dust component)

Color bar represents the latitudinal zone of the comparison, in 5 degree bins

Comparison of CALIPSO product with DREAM

Spatial distribution of 5-year AOD absolute biases for CALIPSO climatological product and the BSC-DREAM8b dust model outputs.

(Basart et al., 2012)

Use satellite data in dust models

Assimilate into Atmospheric model

Compare with Atmospheric model

Sentinel Mirror Site at the National Observatory of Athens

- Disseminate Sentinel data and higher level Copernicus products to the End User & Scientific communities mainly at national level, but also to neighbouring South Eastern Mediterranean and Balkan countries on the basis of the existing and/or future transnational needs and co-operations.
- The whole project is in line with the on-going initiatives and strategic objectives for building at NOA a Center of Excellence for EO based monitoring of the Environment and Natural Disasters (BEYOND) and processing of Space Data.

Conclusions

- Using a lidar ratio of 58 sr instead of 40 improved CALIPSO retrievals for Saharan dust
- Decomposition of pure dust from other pollutants improves also the vertical representation of dust
- Assimilating this information in dust models can improve our understanding and forecasting of dust processes in the atmosphere
- The lidar ratio seems to vary significantly for different dust areas (e.g. Atlantic, Middle East, China)
- This may also imply the need for a different dust modeling approach for different areas

Thank you for your attention!

Acknowledgements

